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Abstract
The Aharonov–Vaidman gauge—which additively transforms the mean value
of a quantum mechanical observable into an associated weak value—is
introduced. It is shown that the unusual eccentric properties of weak values
are inherited from this gauge and that a weak value of an observable can be
considered as its mean value measured in the Aharonov–Vaidman gauge. The
total time derivative of this sum also transforms an observable’s mean value
equation of motion into the associated weak value equation of motion and it is
shown that the weak energy of evolution which influences the evolution of a
weak value is intrinsic to the rate of change of the Aharonov–Vaidman gauge.
Both of these equations of motion can be expressed in terms of time varying
generalized coordinates and their rates of change. These equations satisfy
the Euler–Lagrange equations which—in turn—define conjugate momenta
and provide for their coordinate/momentum/time Poincaré representations.
The underlying mathematical forms of these two representations are identical
except for three symbols which distinguish them physically and identify three
simple replacement operations that are required to transform the mean value
Poincaré representation into the weak value Poincaré representation. This
transformational relationship between Poincaré representations defines the
notion of quasi-form invariance and the replacement operations encode the
peculiar physical properties induced by the Aharonov–Vaidman gauge, i.e.
the complexification and increased dimension of phase space, and the
absorption of the weak energy of evolution by the conjugate momenta. Simple
examples are used to illustrate the theory.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Ta, 45.20.−d, 45.20.Jj

1. Introduction

The weak value Aw of a quantum mechanical observable A was introduced by Aharonov
et al [1–3] more than two decades ago. This quantity is the statistical result of a standard
measurement procedure performed upon a pre-selected and post-selected (PPS) ensemble of
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quantum systems when the interaction between the measuring apparatus and each system is
sufficiently weak. Unlike a standard strong measurement of A which significantly disturbs the
measured system (i.e. it ‘collapses’ the wavefunction), a weak measurement of A for a PPS
system does not appreciably disturb the quantum system and yields Aw as the observable’s
measured value. The peculiar nature of the virtually undisturbed quantum reality that exists
between the boundaries defined by the PPS states is revealed by two eccentric characteristics
of Aw, namely that Aw can be a complex valued quantity and that Re Aw can lie far outside
the eigenvalue spectrum of the associated operator Â (hereinafter referred to as the super-
eigenlimit property of Aw).

An additional eccentricity arises from the fact that weak value theory is a special
consequence of the time-symmetric reformulation of quantum mechanics (TSQM) [3, 4].
Whereas standard quantum mechanics describes a quantum system at a time t using a state
evolving forward in time from the past to t, TSQM also uses a second state evolving backward
in time from the future to t. In the case of weak values, the measured value of Aw at time t not
only depends upon the pre-selected forward evolving state but is also influenced by the post-
selected state’s backward in time evolution from the future. Although experiments performed
in recent years have verified several of the unusual properties predicted by weak value theory
[5–11], the interpretation of weak values remains somewhat controversial. Consequently, this
apparent influence of the future post-selected state upon Aw at time t is referred to in this paper
as the quasi-nonlocal in time property of Aw. Here the prefix ‘quasi-’ is used in the sense that
it is ‘as if’ Aw depends upon this future state.

A main objective of this paper is to introduce a PPS-defined uncertainty quantity called
the Aharonov–Vaidman (AV) gauge as a new ‘scale of measurement’ for mean values. This
quantity additively transforms a mean value of an observable into an associated weak value
and induces each of the eccentric characteristics exhibited by weak values, i.e. their quasi-
nonlocal in time, complex valued and super-eigenlimit properties. The total time derivative of
this sum also yields the weak value’s equation of motion. Thus, a weak value and its equation
of motion can be viewed as the associated mean value and its equation of motion expressed in
the AV gauge. Here the total time derivative of the AV gauge affects the associated additive
transformation of the mean value equation of motion (although it is somewhat non-standard
usage, a mean value equation of motion is herein called an Ehrenfest equation).

An additional objective is to examine the weak value equation of motion from the
perspective of AV gauge transformations. It is first shown that the quasi-nonlocal in time weak
energy of evolution which influences the evolution of weak values [12] results from the rate
of change of the AV gauge. To further develop this perspective, it is then demonstrated that—
instead of its usual commutator version—an Ehrenfest equation can be expressed in terms
of time varying generalized coordinates and their rates of change. Such an equation satisfies
the associated Euler–Lagrange equations and defines conjugate momenta which provide for a
coordinate/momentum/time Poincaré representation of the Ehrenfest equation. It is similarly
shown that a weak value equation of motion also has a Poincaré representation.

These Poincaré representations share the same underlying mathematical form and differ
only by three symbols which distinguish them physically in terms of phase space dimension
and complexification, and weak energy of evolution absorption by conjugate momenta. This
difference defines three straightforward symbol replacement operations which transform one
representation to the other and introduces the notion of quasi-form invariance, i.e. the
form invariance of the Poincaré representation of the Ehrenfest equation under AV gauge
transformations. In keeping with the custom of specifying gauge transformations as ‘global’
or ‘local’, the prefix ‘quasi-’ is used here to refer to the quasi-nonlocal in time property of the
AV gauge. This prefix is also used to denote that the complexification, increased dimension and
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weak energy absorption attributes of the replacement operations associated with quasi-form
invariance are not inherent in the canonical notion of form invariance.

The remainder of this paper is organized as follows: in the next section, weak
measurements and weak value theory are reviewed. The AV gauge is defined and discussed
in section 3 and the Poincaré representation of the Ehrenfest equation is developed in
section 4. Section 5 introduces AV gauging of the Ehrenfest equation, investigates the
relationship between the rate of change of the AV gauge and the weak energy of evolution,
discusses the absorption of the weak energy of evolution by the conjugate momenta and
establishes the Poincaré representation for the weak value equation of motion. Quasi-form
invariance and the symbol replacement operations are discussed in section 6. Simple examples
illustrate aspects of the theory and closing remarks comprise the final section of this paper.

2. Weak measurements and weak values

Weak measurements arise in the von Neumann description of a quantum measurement at time
t0 of a time-independent observable A that describes a quantum system in an initial fixed
pre-selected state |ψi〉 = ∑

J cj |aj 〉 at t0, where the set J indexes the eigenstates |aj 〉 of Â. In
this description, the Hamiltonian for the interaction between the measurement apparatus and
the quantum system is

Ĥ = g(t)Âp̂.

Here g(t) = gδ(t − t0) defines the strength of the measurement’s impulsive interaction at t0
and p̂ is the momentum operator for the pointer of the measurement apparatus which is in the
initial state |φ〉. Let q̂ be the pointer’s position operator that is conjugate to p̂ and assume that
〈q|φ〉 ≡ φ(q) is real valued with 〈q〉 ≡ 〈φ |̂q|φ〉 = 0.

Prior to the measurement the pre-selected system and the pointer are in the tensor product
state |ψi〉|φ〉. Immediately following the measurement, the combined system is in the state

|�〉 = e− i
h̄

∫
Ĥdt |ψi〉|φ〉 =

∑
J

cj e− i
h̄
gaj p̂|aj 〉|φ〉,

where use has been made of the fact that
∫

Ĥ dt = gÂp̂. The exponential factor in this
equation is the translation operator Ŝ(gaj ) for |φ〉 in its q-representation. It is defined by the
action 〈q |̂S(gaj )|φ〉 = 〈q −gaj |φ〉 ≡ φ(q −gaj ) which translates the pointer’s wavefunction
over a distance gaj parallel to the q-axis. The q-representation of the combined system and
pointer state is

〈q|�〉 =
∑

J

cj 〈q |̂S(gaj )|φ〉|aj 〉.

When the measurement interaction is strong, the quantum system is appreciably disturbed
and its state ‘collapses’ to an eigenstate |an〉 leaving the pointer in the state 〈q |̂S(gan)|φ〉 with
probability |cn|2. Strong measurements of an ensemble of identically prepared systems yield
g〈A〉 ≡ g〈ψi |Â|ψi〉 as the centroid of the pointer probability distribution

|〈q|�〉|2 =
∑

J

|cj |2|〈q |̂S(gaj )|φ〉|2, (1)

with 〈A〉 as the measured value of Â.
A weak measurement of Â occurs when the interaction strength g is small so that the system

is essentially undisturbed and when the uncertainty �q is much larger than Â’s eigenvalue
separation. In this case, equation (1) is the superposition of broad, strongly overlapping
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|〈q |̂S(gaj )|φ〉|2 terms. Although a single measurement provides little information about Â,
many repetitions allow the centroid of equation (1) to be determined to any desired accuracy.

If a system state is post-selected after a weak measurement is performed, then the resulting
pointer state is

|�〉 ≡ 〈ψf |�〉 =
∑

J

c′∗
j cj Ŝ(gaj )|φ〉,

where |ψf 〉 = ∑
J c′

j |aj 〉, 〈ψf |ψi〉 �= 0, is the post-selected state at t0. Since

Ŝ(gaj ) =
∞∑

m=0

[−igaj p̂/h̄]m

m!
,

then

|�〉 =
∑

J

c′∗
j cj

{
1 − i

h̄
gAwp̂ +

∞∑
m=2

[−igp̂/h̄]m

m!
(Am)w

}
|φ〉 ≈

{∑
J

c′∗
j cj

}
Ŝ(gAw)|φ〉

so that

|〈q|�〉|2 ≈
∣∣∣∣∣∑

J

c′∗
j cj

∣∣∣∣∣
2

|〈q |̂S(g Re Aw)|φ〉|2. (2)

Here

(Am)w =
∑

J c′∗
j cj a

m
j∑

J c′∗
j cj

= 〈ψf |Âm|ψi〉
〈ψf |ψi〉 ,

with the weak value Aw of Â defined by

Aw ≡ (A1)w = 〈ψf |Â|ψi〉
〈ψf |ψi〉 . (3)

From this expression it is easy to see that Aw is—in general—a complex valued quantity that
can be calculated directly from theory and that when |ψi〉 and |ψf 〉 are nearly orthogonal
Re Aw can lie far outside Â’s eigenvalue spectrum, i.e. Aw has the super-eigenlimit property.

Equation (2) corresponds to a broad pointer position distribution with a single peak at
〈q〉 = g Re Aw with Re Aw as the measured value of Â. This occurs when both of the following
relationships between g and the pointer momentum uncertainty �p are simultaneously satisfied
[13]:

�p 
 h̄

g
|Aw|−1 and �p 
 min

(m=2,3,...)

h̄

g

∣∣∣∣ Aw

(Am)w

∣∣∣∣ 1
m−1

.

Note that in expressing equation (2), use has been made of the fact that since 〈q|φ〉 is real
valued, the pointer position must be translated by g Re Aw only. The imaginary part Im Aw

influences the mean of the pointer’s momentum and translates it from the initial mean by an
amount proportional to the product of Im Aw with the variance of the initial pointer momentum
distribution [14].

When the PPS states continuously change with time in accordance with the Schrödinger
equations

d|ψi〉
dt

= − i

h̄
Ĥ i |ψi〉 and

d|ψf 〉
dt

= − i

h̄
Ĥ f |ψf 〉,

then the equation of motion for Aw is found to be

Ȧw ≡ dAw

dt
= i

h
{(Hf A − AHi)w − Aw(Hf − Hi)w} +

(
∂Â

∂t

)
w

4
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(the details of the somewhat technical derivation of this equation are given in [12]). The
peculiar factor (Hf −Hi)w appearing in the second term of this equation is the quasi-nonlocal
in time weak energy of evolution. As will be shown below, this quantity is intrinsic to the rate
of change of the AV gauge.

3. The Aharonov–Vaidman gauge

The action of an operator Â upon the pre-selected state |ψi〉 at time t can be uniquely written
as [3]

Â|ψi〉 = 〈A〉|ψi〉 + �A
∣∣ψ⊥

i

〉
, (4)

where 〈A〉 = 〈ψi |Â|ψi〉 is the mean value of A and �A =
√

〈A2〉 − 〈A〉2 is the associated
uncertainty. The contemporaneous orthonormal state

∣∣ψ⊥
i

〉
is |ψi〉’s orthogonal companion

state which is induced by the action of Â upon |ψi〉. The companion state belongs to the
subspace of Â’s Hilbert space H that is the orthogonal complement of the subspace of H that
contains |ψi〉 and it satisfies the conditions〈

ψ⊥
i

∣∣ψi〉 = 0 and �A = 〈
ψ⊥

i

∣∣Â|ψi〉. (5)

The AV gauge is a consequence of the uncertainty/orthogonal companion state term on
the right-hand side of equation (4). In particular, the AV gauge is obtained when both sides of
equation (4) are multiplied from the left by the post-selected bra state 〈ψf | at time t and then
divided by the product 〈ψf |ψi〉 �= 0. The following identity for the weak value of A at time t
is then obtained:

Aw ≡ 〈ψf |Â|ψi〉
〈ψf |ψi〉 = 〈A〉 + 	. (6)

Thus, Aw is related to 〈A〉 by a straightforward additive transformation—the AV transformation
in gauge〈ψf | (or—for short—the AV gauge transformation)—of 〈A〉. The additive term

	 ≡ �A

〈
ψf

∣∣ψ⊥
i

〉
〈ψf |ψi〉 (7)

is the associated AV gauge.
Equations (6) and (7) show that a weak value for an observable generalizes the notion of

the observable’s mean value in the sense that Aw can be viewed as 〈A〉 expressed or measured
in AV gauge 〈ψf | (valuewise, Aw = 〈A〉 when 〈ψf | = 〈ψi | since 	 = 0). Thus—from this
perspective—an apparatus which measures weak values actually measures mean values in the
AV gauge. It is also clear from these equations that Re Aw can lie far outside Â’s eigen-spectral
limits because it can be the case that |Re 	| → ∞ as 〈ψf | → 〈

ψ⊥
i

∣∣. Interestingly, the ratio

	

�A
=

〈
ψf

∣∣ψ⊥
i

〉
〈ψf |ψi〉

serves as a ‘dissimilarity gauge’ in that the more similar |ψf 〉 is to
∣∣ψ⊥

i

〉
, the more eccentric

Aw can become. As can also be seen from this ratio, Aw is complex only when 	 is complex
(obviously, 	 can be complex-valued because it is a quotient of probability amplitudes). Thus,
the super-eigenlimit and complex valued eccentric characteristics of Aw are those possessed
by and inherited from 	.

In order to better understand the quasi-nonlocal in time nature of Aw and to see that
this nonlocal property is also completely inherited from 	, consider equation (7). Recall
that—although the measurement of Â occurs at time t so that |ψi〉, |ψf 〉 and

∣∣ψ⊥
i

〉
are states

5
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at t—the states |ψi〉 and |ψf 〉 are actually pre-selected and post-selected at times ti < t

and tf > t , respectively, and
∣∣ψ⊥

i

〉
is induced at time ti by the pre-selection of |ψi〉. If Û ,

V̂ † and Ŵ are unitary operators such that |ψi(t)〉 = Û |ψi(ti)〉, 〈ψf (t)| = 〈ψf (tf )|V̂ † and∣∣ψ⊥
i (t)

〉 = Ŵ
∣∣ψ⊥

i (ti)
〉
, then equation (7) can also be written equivalently as

	 = �A
〈ψf (tf )|V̂ †Ŵ

∣∣ψ⊥
i (ti)

〉
〈ψf (tf )|V̂ †Û |ψi(ti)〉

.

Observe that the action of V̂ † upon 〈ψf (tf )| accounts for the influence of the future post-
selected state upon Aw at t. Furthermore, since both 〈A〉 and �A depend only upon the
pre-selected state at t, then it is clear that the quasi-nonlocal in time property is strictly a
characteristic of 	 and that Aw inherits this property from 	.

Thus, Aw is an additive blending of the standard quantum mechanical properties of 〈A〉
with the non-standard eccentric properties possessed by the AV gauge. Although equation (6)
states that there is a gauge freedom associated with how to choose to measure Â, the measured
value Aw is obviously a gauge-dependent quantity because it is contingent upon the choice
made for 〈ψf (t)| (e.g. the choice 〈ψf (t)| = 〈ψi(t)| yields Aw = 〈A〉 as the measured value of
Â). Nevertheless, the properties of 〈A〉 are completely subsumed by those of Aw—regardless
of the choice of gauge. As will be formally shown in section 5, this is also true for the
dynamics of 〈A〉.

4. The Poincaré representation of the Ehrenfest equation

4.1. Theory

When expressed in the usual form

〈Ȧ〉 = 1

ih̄
〈[Â, Ĥ ]〉 +

〈
∂Â

∂t

〉
, (8)

the Ehrenfest equation for a quantum mechanical observable A is related to both the explicit
temporality of operator Â and the commutability of Â with the associated system’s Hamiltonian
operator Ĥ . This form of the equation for 〈Ȧ〉 is useful for determining if A is a constant of
the motion, e.g. [15], as well as for affirming (via Ehrenfest’s theorem) the formal identity
between the Ehrenfest equations for quantum mechanical coordinate and conjugate momentum
observables and the Hamilton equations of classical mechanics, e.g. [16].

However, when a quantum system’s state depends explicitly not only upon time but also
upon variables which implicitly change with time, then—as is shown here—〈Ȧ〉 assumes a
representation that is induced by application of the chain rule for differentiation and which
satisfies the associated Euler–Lagrange equations. To see this, let A be an arbitrary observable
for a quantum mechanical system that is described by the normalized state

|ψ〉 =
∑

J

cj (γ1, γ2, . . . , γn, t)|ϕj 〉 ≡
∑

J

cj |ϕj 〉.

The set J indexes the fixed basis states |ϕj 〉 of the system and each generalized coordinate
γ�, � ∈ L = {1, 2, . . . , n} is real valued and assumed to change with time (here, a quantity
which does not change with time is a fixed parameter—not a coordinate). Then the mean
value of Â can be expressed as

〈A〉 ≡ 〈ψ |Â|ψ〉 =
∑
J,K

c∗
j ck〈ϕj |Â|ϕk〉

6
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so that

〈Ȧ〉 =
∑
J,K

{[∑
L

(
∂c∗

j ck

∂γ�

)
γ̇� +

(
∂c∗

j ck

∂t

)]
〈ϕj |Â|ϕk〉 + c∗

j ck〈ϕj |∂Â

∂t
|ϕk〉

}
. (9)

Here, K = J , Â depends explicitly upon time only and it is assumed that Â does not necessarily
commute with Ĥ .

It is readily determined from the last equation that

∂〈Ȧ〉
∂γr

=
∑
J,K

{[∑
L

∂

∂γr

(
∂c∗

j ck

∂γ�

)
γ̇� +

∂

∂γr

(
∂c∗

j ck

∂t

)]
〈ϕj |Â|ϕk〉 +

(
∂c∗

j ck

∂γr

)
〈ϕj |∂Â

∂t
|ϕk〉

}
and

∂〈Ȧ〉
∂γ̇r

=
∑
J,K

(
∂c∗

j ck

∂γr

)
〈ϕj |Â|ϕk〉, (10)

whence

d

dt

(
∂〈Ȧ〉
∂γ̇r

)
=

∑
J,K

{[∑
L

∂

∂γ�

(
∂c∗

j ck

∂γr

)
γ̇� +

∂

∂t

(
∂c∗

j ck

∂γr

)]
〈ϕj |Â|ϕk〉 +

(
∂c∗

j ck

∂γr

)
〈ϕj |∂Â

∂t
|ϕk〉

}
.

When c∗
j ck , its first partial derivatives with respect to γ� and t, and its second partial

derivatives with respect to γ� and γr and with respect to γr and t are continuous—as is
assumed here—then

∂

∂γ�

(
∂c∗

j ck

∂γr

)
= ∂

∂γr

(
∂c∗

j ck

∂γ�

)
and

∂

∂t

(
∂c∗

j ck

∂γr

)
= ∂

∂γr

(
∂c∗

j ck

∂t

)
so that

d

dt

(
∂〈Ȧ〉
∂γ̇r

)
= ∂〈Ȧ〉

∂γr

. (11)

Thus, 〈Ȧ〉 satisfies the Euler–Lagrange equation for each generalized coordinate γr .
Consequently—as a side note—if C ⊆ R

n (R is the set of real numbers) is the associated
n-dimensional configuration space, then it must be the case that the actual path in C followed
by the evolving system during a fixed time interval [t1, t2] is such that the action E ≡ ∫ t2

t1
〈Ȧ〉 dt

is stationary, i.e. the first variation δE vanishes with respect to path variations that vanish at
the end points (clearly, this is trivially the case here since δE = δ

∫ t2
t1

d〈A〉 = δ[〈A〉]t2t1 = 0).
Equation (10) defines for each coordinate a real valued conjugate momentum pγr

according
to

pγr
≡ ∂〈Ȧ〉

∂γ̇r

. (12)

Using this result in equation (9) yields the Poincaré representation of the Ehrenfest equation

〈Ȧ〉 =
∑
L

pγ�
γ̇� +

∂〈A〉
∂t

, (13)

where

∂〈A〉
∂t

≡
∑
J,K

(
∂c∗

j ck

∂t

)
〈ϕj |Â|ϕk〉 +

〈
∂Â

∂t

〉
(14)

(liberty is taken to refer to equation (13) as the Poincaré representation because
∑

Lpγ�
γ̇� dt =∑

Lpγ�
dγ� is a Poincaré 1-form (e.g. [17])).

7
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Comparison of equations (13) and (14) with equation (8) yields the identity

〈[Â, Ĥ ]〉 = ih̄

{∑
L

pγ�
γ̇� +

∑
J,K

(
∂c∗

j ck

∂t

) 〈
ϕj

∣∣ Â |ϕk〉
}

. (15)

Observe that when A is a constant of the motion, i.e. 〈Ȧ〉 = 0, then γ̇� = 0, � ∈ L and
∂〈A〉
∂t

= 0 = 〈
∂Â
∂t

〉
which implies that

∂c∗
j ck

∂t
= 0, j ∈ J, k ∈ K . Thus,∑

L

pγ�
γ̇� +

∑
J,K

(
∂c∗

j ck

∂t

)
〈ϕj |Â|ϕk〉 = 0

which is in complete agreement with the requirement [Â, Ĥ ] = 0.

4.2. Example: Spin- 1
2 particle in a uniform magnetic field

As an illustration of this theory, consider the evolution of the mean value of the Pauli spin
operator σ̂x for a spin- 1

2 particle under the influence of a uniform magnetic field B oriented
along the z-axis of a three-dimensional Cartesian reference frame. Assume that the angle θ

the spin direction makes with the positive z-axis varies with time and that at any time t the
normalized state for the system is

|ψ〉 = eiαt cos
θ

2
|+〉 + e−iαt sin

θ

2
|−〉 ≡ c1|+〉 + c2|−〉.

Here, α = μB

h̄
, where μ is the magnetic moment, is a fixed parameter and |±〉 are the

orthogonal spin basis eigenkets for the Pauli operator σ̂z.
Using equation (9) with Â = σ̂x , J = K = {1, 2}, L = {1}, γ1 = θ and ∂Â

∂t
= ∂σ̂x

∂t
= 0

yields

〈σ̇x〉 =
(

θ̇
∂

∂θ
+

∂

∂t

)
(c∗

1c2 + c1c
∗
2) =

(
θ̇

∂

∂θ
+

∂

∂t

)
sin θ cos 2αt

= θ̇ cos θ cos 2αt − 2α sin θ sin 2αt, (16)

where use has been made of the fact that σ̂x |±〉 = |∓〉. It is easily verified that this expression
satisfies equation (11) and that equation (12) yields pθ = cos θ cos 2αt so that equation (16)
can be rewritten in its Poincaré representation as

〈σ̇x〉 = pθ θ̇ +
∂〈σx〉

∂t
, (17)

where
∂〈σx〉

∂t
= −2α sin θ sin 2αt.

Observe that these results are identical to those obtained by first computing 〈σx〉 ≡ 〈ψ |σ̂x |ψ〉 =
sin θ cos 2αt and then taking its total time derivative.

It is also interesting to verify equation (15). Application of the time-dependent
Schrödinger equation yields the following matrix representation for the system’s Hamiltonian
operator expressed in the |±〉 basis

H̃ = h̄

(
−α −i θ̇

2 e2iαt

i θ̇
2 e−2iαt α

)
.

Using

σ̃x =
(

0 1
1 0

)
and |ψ〉 =

⎛⎜⎝ eiαt cos
θ

2

e−iαt sin
θ

2

⎞⎟⎠ ,

8
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it is readily determined that in the |±〉 basis representation

[σ̂x, Ĥ ] = h̄

(
iθ̇ cos 2αt 2α

−2α −iθ̇ cos 2αt

)
and

〈σ̇x〉 = 1

ih̄
〈ψ |[σ̂x, Ĥ ]|ψ〉 = θ̇ cos θ cos 2αt − 2α sin θ sin 2αt = pθ θ̇ +

∂〈σx〉
∂t

.

Thus, equation (8) is in complete agreement with equation (17).

5. Gauging the Ehrenfest equation

5.1. Theory

The equation of motion for a time-dependent weak value was first introduced by Parks et al [6]
and has been discussed more recently in terms of the influence exerted upon the evolution of a
weak value by a strange quasi-nonlocal in time weak energy of evolution that is manifested by
the dynamics of the PPS states [12] (thus, an apparatus which measures weak values when the
associated PPS states are changing with time is also a weak energy of evolution generator).
This section extends these analyses by examining the weak value equation of motion from the
perspective of an AV gauge transformation of an Ehrenfest equation defined by the total time
derivative of equation (6), i.e.

Ȧw = 〈Ȧ〉 + 	̇. (18)

(Liberty is taken here to call this equation an AV gauge transformation of 〈Ȧ〉 since
transformations of this form with Ȧw and 〈Ȧ〉 replaced by Lagrangian energy functions
and 	̇ replaced by the total time derivative of a function of coordinates and time have been
historically referred to as gauge transformations in the classical mechanics literature (e.g.
[18–20]).)

It is apparent from this equation that the dynamics of 〈A〉 are completely subsumed by
those of Aw. Also, since the weak energy of evolution is associated only with Ȧw and not
〈Ȧ〉, then it must be the case that it is intrinsic to 	̇. This is made more clear by considering
the special case where Aw is replaced in equation (18) by the weak energy of evolution
(Hf − Hi)w and Ĥ f − Ĥ i is assumed to be a constant of the motion so that d〈Hf −Hi 〉

dt
= 0.

For this special case d(Hf − Hi)w = d	, i.e. changes in the weak energy of evolution are
precisely due to changes in 	 (it is interesting to note that if it is also true that [Ĥ f , Ĥ i] = 0,
then 	̇ = i

h̄

[{(Hf −Hi)
2}w − (Hf −Hi)

2
w

] = i
h̄
�2

w(Hf −Hi), the weak variance of the weak
energy of evolution [21]).

Since |ψi〉 (=|ψ〉) depends upon γ�, � ∈ L, and t, it is clear from equation (4) that
∣∣ψ⊥

i

〉
also depends upon these coordinates and t. Furthermore—in general—the post-selected state
|ψf 〉 introduces into the expression for 	 the additional (time varying real valued) coordinates
γn+1, γn+2, . . . , γm so that

	 = 	(γ1, γ2, . . . , γm, t)

and the complete collection of coordinates is now indexed by the set L	 = {1, 2, . . . , m}.
Thus,

	̇ =
∑
L	

(
∂	

∂γ�

)
γ̇� +

∂	

∂t
. (19)

When the first and second partial derivatives of 	 are continuous—as is assumed
here—then it is readily verified that 	̇ satisfies the associated Euler–Lagrange equations

9
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for each γr, r ∈ L	. Since 〈Ȧ〉 also satisfies the Euler–Lagrange equations for each
γr, r ∈ L, then—by equation (18)—Ȧw satisfies the Euler–Lagrange equations for each
γr, r ∈ L	. Consequently—again as a side note—if C	 ⊆ R

m is the associated m-dimensional
configuration space, then it must be the case that the actual path in C	 followed by the system
during a fixed time interval [t1, t2] is such that the action E	 ≡ ∫ t2

t1
Ȧw dt is stationary, i.e.

the first variation δE	 vanishes with respect to path variations that vanish at the endpoints (as
before, this is trivially the case here since δE	 = δ

∫ t2
t1

dAw = δ[Aw]t2t1 = 0). That the motion
of Aw in C	 subsumes that of 〈A〉 in C is a consequence of the fact that since C is a subspace
of C	, the path followed in C is the image of that followed in C	 under the projection map
π : R

m → R
n.

The conjugate momentum p	
γr

is defined for each r ∈ L	 via

p	
γr

≡ ∂Ȧw

∂γ̇r

so that

p	
γr

=

⎧⎪⎪⎨⎪⎪⎩
pγr

+
∂	

∂γr

, r ∈ L

∂	

∂γr

, r ∈ L	 − L,

(20)

where set L	 − L is the complement of set L with respect to set L	. These momenta—along
with the associated coordinates—generally increase phase space dimension and complexify
it when 	 is complex valued. Also, since the weak energy of evolution is intrinsic only to
	̇, then it follows from equations (19) and (20) that each p	

γr
depends upon and is defined (in

part) by this weak energy, i.e. p	
γr

is said to absorb the weak energy of evolution via the term
∂	
∂γr

. Because of this absorption, p	
γr

(and—consequently—Ȧw) inherits from 	 the property
of being quasi-nonlocal in time.

These results—and the fact that ∂Aw

∂t
= ∂(〈A〉+	)

∂t
—yield the Poincaré representation for

Ȧw:

Ȧw =
∑
L	

p	
γ�

γ̇� +
∂Aw

∂t
. (21)

The influence of the weak energy of evolution upon Ȧw through its absorption by each p	
γ�

is
apparent from this equation (observe that if ∂	

∂t
= 0, then the quasi-nonlocal in time property

associated with Ȧw is entirely attributed to the conjugate momenta). It is also apparent from the
comparison of equation (13) with equation (21) that the underlying mathematical form of the
Poincaré representation is preserved by AV gauge transformations. However—as mentioned
above and is discussed further in section 6—this preservation of form is not a form invariance
in the usual sense.

5.2. Example: σzw
and σ̇zw

as expressions for 〈σz〉 and 〈σ̇z〉 in the AV gauge

In this subsection, the Pauli spin operator σ̂z and the PPS states

|ψi〉 = cos α|+〉 + sin α|−〉
and

|ψf 〉 = cos β|+〉 + sin β|−〉
at measurement time t serve to illustrate AV gauge transformation theory. Here σ̂z|±〉 = ±|±〉,
α is a time varying pre-selection angle and β a fixed post-selection angle, i.e. it is a fixed

10
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parameter—not a coordinate. Then 〈σz〉 ≡ 〈ψi |σ̂z|ψi〉 = cos 2α and �σz = sin 2α. It is
determined from equation (4) that∣∣ψ⊥

i

〉 = sin α|+〉 − cos α|−〉
and easily verified that this state satisfies conditions (5).

It follows from equation (7) that the associated AV gauge is

	 = sin 2α tan(α − β) (22)

(note that here the ‘dissimilarity gauge’ is tan(α−β)) and from equation (6) that 〈σz〉 expressed
in AV gauge 〈ψf | is

σzw
= cos 2α + sin 2α tan(α − β) = cos(α + β)

cos(α − β)
(23)

(observe that σzw
= 〈σz〉 in AV gauge 〈ψi |). This result agrees identically with that calculated

directly using the definition for σzw
obtained from equation (3). Note that although σzw

is real
valued (as are 〈σz〉 and 	), it is clear that it inherits an eccentric super-eigenlimit property
from 	 (|〈σz〉| � 1 while |	| → ∞ as |α − β| → π

2 ).
Since 〈σ̇z〉 = −2α̇ sin 2α and ∂〈σz〉

∂t
= 0, then

pα = ∂〈σ̇z〉
∂α̇

= −2 sin 2α

and the Poincaré representation for 〈σ̇z〉 is

〈σ̇z〉 = pαα̇. (24)

Also, the total time derivative of the AV gauge is

	̇ = α̇{2 cos 2α tan(α − β) + sin 2α sec2(α − β)}, α − β �= π

2
,

3π

2
so that application of equation (18) yields

σ̇zw
= α̇{−2 sin 2α + 2 cos 2α tan(α − β) + sin 2α sec2(α − β)}.

This result is the same as that obtained by taking the total time derivative of equation (23).
The last equation yields the momentum conjugate to α according to

p	
α = ∂σ̇zw

∂α̇
= −2 sin 2α + 2 cos 2α tan(α − β) + sin 2α sec2(α − β) = pα +

∂	

∂α
.

Since ∂σzw

∂t
= 0, then the Poincaré representation for σ̇zw

is given by

σ̇zw
= p	

α α̇. (25)

The fact that this AV gauge transformation preserves the underlying mathematical form
of the Poincaré representations for 〈σ̇z〉 and σ̇zw

is especially obvious when comparing
equations (24) and (25) because ∂〈σz〉

∂t
= ∂σzw

∂t
= 0 and L	 = L.

It is interesting to use this simple example to examine how the weak energy of evolution
influences the AV gauge and how it is absorbed by the conjugate momentum p	

α . Application
of the time-dependent Schrödinger equation to |ψi〉 and |ψf 〉 yields Ĥ i = h̄α̇σ̂y and Ĥ f = 0̂,
respectively, where σ̂y is the Pauli spin y operator. From equation (3) it is found that the
associated weak energy of evolution for this example is the pure imaginary quantity given by

(Hf − Hi)w = −(Hi)w = ih̄α̇ tan(α − β)

so that equation (22) can be rewritten as

	 = i(Hi)w

h̄α̇
sin 2α

11
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(the simple relationship between (Hi)w and σzw
for this example follows from equation (6)).

Then
∂	

∂α
= i

h̄α̇

{(
∂(Hi)w

∂α

)
sin 2α + 2(Hi)w cos 2α

}
and (Hi)w is absorbed by p	

α according to

p	
α = pα +

i

h̄α̇

{(
∂(Hi)w

∂α

)
sin 2α + 2(Hi)w cos 2α

}
.

Since ∂σzw

∂t
= 0, then it is also the case that σ̇zw

’s quasi-nonlocal in time property is manifested
entirely by p	

α through (Hi)w.

6. Quasi-form invariance and symbol replacement operations

It has been demonstrated above that—in addition to inducing the quasi-nonlocal in
time property—AV gauge transformations preserve the underlying mathematical form of
the Poincaré representation of the Ehrenfest equation. However, casual inspection of
equations (13) and (21) reveals that these equations are distinguished by the different symbols
used for their summation index sets, conjugate momenta and time differentiable functions.
These differences identify the following three straightforward symbol replacement operations
which transform the Poincaré representation for 〈Ȧ〉 given by equation (13) into that for Ȧw

given by equation (21): (i) L → L	, (ii) pγ�
→ p	

γ�
and (iii) 〈A〉 → Aw (which implies

〈Ȧ〉 → Ȧw and ∂〈A〉
∂t

→ ∂Aw

∂t
). Here ‘→’ means replace the symbol to the left of the arrow

everywhere in equation (13) with the symbol to the right of the arrow (the reverse operations
are obvious).

That these replacements preserve the underlying mathematical form of equation (13) is
obvious. It is also the case that they encode information about the dynamics and the physical
differences between 〈A〉 and Aw. In particular, since |L| � |L	|, then replacement (i) can
increase the dimension of the phase space for 〈A〉 in order to accommodate the additional
coordinates introduced by the post-selected state (it follows that evolutionary trajectories for
〈A〉 can be injectively mapped into the phase space for Aw without perturbing the associated
dynamics of 〈A〉, i.e. the dynamics for 〈A〉 are completely subsumed by those for Aw).

While replacements (ii) and (iii) clearly account for the complexification of Ȧw when 	

is complex valued, replacement (ii) is specifically responsible for the conjugate momenta’s
absorption of the weak energy of evolution. Also—as mentioned in section 2 within the context
of weak measurements—complexification induced by replacements (ii) and (iii) account for
the influence of Im Ȧw upon the dynamics of the mean value of the measurement pointer’s
momentum. Taken together, replacements (i) and (ii) show that the only transformations
associated with the canonical notion of form invariance that are in effect here are the coordinate
transformation identities and momentum transformations p	

γ�
= pγ�

+ ∂ Re 	
∂γ�

performed over

index set L. For the special case where L = L	 and complexification is not introduced by the
AV gauge transformation, then—excluding the quasi-nonlocal in time property—quasi-form
invariance acquires the attributes of canonical form invariance in the sense that the phase space
dimension is unchanged and the usual coordinate transformation identities and momentum
transformations apply. The example in section 5 is an illustration of this.

Replacements (i)–(iii), along with their physical consequences and the quasi-nonlocal
in time property, are intrinsic to AV gauge transformations and characterize the quasi-
form invariance of the Poincaré representation of an Ehrenfest equation under AV gauge
transformations.
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7. Closing remarks

The weak value for a quantum mechanical observable can be viewed as its mean value measured
in the AV gauge and a weak value equation of motion can be considered to be an AV gauged
Ehrenfest equation. All of the eccentric properties associated with weak values and weak value
equations of motion—including the existence of the weak energy of evolution—are attributed
to the AV gauge and its time derivative.

Ehrenfest equations and their AV gauged counterparts exhibit quasi-form invariant
Poincaré representations. Quasi-form invariance is intrinsic to AV gauge transformations
and is characterized by the induced quasi-nonlocal in time property and by three symbol
replacement operations which not only maintain the underlying mathematical form of these
Poincaré representations but also encode the physics induced by an AV gauge transformation
of an Ehrenfest equation, i.e. increased phase space dimension, phase space complexification
and absorption of the weak energy of evolution by the conjugate momenta.
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